geoengineering explained: the benefits and challenges of stratospheric aerosols

Stratospheric aerosols are minute particles suspended in the atmosphere designed for solar radiation management [SRM]. When these particles are sufficiently large, their presence becomes noticeable as they scatter and absorb sunlight, which can reduce visibility [haze] and redden sunrises and sunsets. Aerosols interact both directly and indirectly with the Earth’s radiation budget and climate. As…

geoengineering explained: the benefits and challenges of space reflectors

Space reflectors, a form of solar radiation management [SRM], are sun shields positioned in space in order to reduce the amount of solar energy reaching the earth. Options include placing mirrors around the earth, placing millions of reflectors between the earth and the sun where the gravitational attraction between the two bodies is equal, launching a…

geoengineering explained: the benefits and challenges of ocean fertilization

Ocean fertilization is an untested carbon dioxide sequestration (CDR) technique that involves dissolving nitrates or iron into the water which will encourage an increase in carbon uptake by phytoplankton. After the plankton blooms, it dies and then sinks to the ocean floor where the carbon will be stored as sedimentary rock. BENEFITS CHALLENGES Relatively safe…

geoengineering explained: the benefits and challenges of afforestation

Afforestation is the process of planting trees, or sowing seeds, in a barren land devoid of any trees to create a forest. The term should not be confused with reforestation, which is the process of specifically planting native trees into a forest that has decreasing numbers of trees. The increased number of trees helps to…